Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Cancer ; 23(1): 60, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2237258

RESUMEN

BACKGROUND: Colorectal cancer is the third most diagnosed cancer globally and the second leading cause of cancer death. We examined colon and rectal cancer treatment patterns in Australia. METHODS: From cancer registry records, we identified 1,236 and 542 people with incident colon and rectal cancer, respectively, diagnosed during 2006-2013 in the 45 and Up Study cohort (267,357 participants). Cancer treatment and deaths were determined via linkage to routinely collected data, including hospital and medical services records. For colon cancer, we examined treatment categories of "surgery only", "surgery plus chemotherapy", "other treatment" (i.e. other combinations of surgery/chemotherapy/radiotherapy), "no record of cancer-related treatment, died"; and, for rectal cancer, "surgery only", "surgery plus chemotherapy and/or radiotherapy", "other treatment", and "no record of cancer-related treatment, died". We analysed survival, time to first treatment, and characteristics associated with treatment receipt using competing risks regression. RESULTS: 86.4% and 86.5% of people with colon and rectal cancer, respectively, had a record of receiving any treatment ≤2 years post-diagnosis. Of those treated, 93.2% and 90.8% started treatment ≤2 months post-diagnosis, respectively. Characteristics significantly associated with treatment receipt were similar for colon and rectal cancer, with strongest associations for spread of disease and age at diagnosis (p<0.003). For colon cancer, the rate of "no record of cancer-related treatment, died" was higher for people with distant spread of disease (versus localised, subdistribution hazard ratio (SHR)=13.6, 95% confidence interval (CI):5.5-33.9), age ≥75 years (versus age 45-74, SHR=3.6, 95%CI:1.8-7.1), and visiting an emergency department ≤1 month pre-diagnosis (SHR=2.9, 95%CI:1.6-5.2). For rectal cancer, the rate of "surgery plus chemotherapy and/or radiotherapy" was higher for people with regional spread of disease (versus localised, SHR=5.2, 95%CI:3.6-7.7) and lower for people with poorer physical functioning (SHR=0.5, 95%CI:0.3-0.8) or no private health insurance (SHR=0.7, 95%CI:0.5-0.9). CONCLUSION: Before the COVID-19 pandemic, most people with colon or rectal cancer received treatment ≤2 months post-diagnosis, however, treatment patterns varied by spread of disease and age. This work can be used to inform future healthcare requirements, to estimate the impact of cancer control interventions to improve prevention and early diagnosis, and serve as a benchmark to assess treatment delays/disruptions during the pandemic. Future work should examine associations with clinical factors (e.g. performance status at diagnosis) and interdependencies between characteristics such as age, comorbidities, and emergency department visits.


Asunto(s)
COVID-19 , Neoplasias del Colon , Neoplasias del Recto , Humanos , Anciano , Persona de Mediana Edad , Australia/epidemiología , Pandemias , Neoplasias del Recto/epidemiología , Neoplasias del Recto/terapia , Estilo de Vida
2.
Public Health Res Pract ; 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2025834

RESUMEN

OBJECTIVES: In response to the coronavirus 2019 (COVID-19) pandemic, a research project was developed with a cohort of 45 and Up Study participants to generate timely, relevant evidence to guide policy, practice and planning. This paper describes the research model, the cohort establishment and characteristics, and some findings. METHODS: A subgroup of 45 and Up Study participants was invited to enrol in 45 and Up COVID Insights -a series of five online surveys conducted during 2020-22. The model involved a close collaborative partnership with the New South Wales Ministry of Health and a panel of scientific advisers, an agile data collection methodology and rapid dissemination of findings. Frequent, iterative engagement with stakeholders provided a framework for identifying survey themes and questions and ensured wide dissemination of findings. Themes included healthcare use, attitudes toward and uptake of COVID-19 prevention measures, and the impact of the pandemic on mental health, loneliness, and lifestyle behaviours. RESULTS: 45 and Up COVID Insights achieved strong stakeholder engagement through extensive consultation and rapid reporting of results. The project recruited a diverse cohort of 32 115 participants: median age 68 years (range: 56-100+); 8% from outer regional/remote areas; 12% from the most socioeconomically disadvantaged communities; and 9% from culturally and linguistically diverse backgrounds. The first four surveys found that the impact of the pandemic varied across populations and stages of the pandemic. Between February-April (survey 2) 2021, 10% reported missed healthcare in the past month because of the pandemic, rising to 26% by September-November 2021 (survey 4). Quality of life remained high (>90% good-excellent across the surveys). As the pandemic progressed, the proportion reporting worsened mental health as a result increased from 29% (July-December 2020, survey 1) to 46% (survey 4). In survey 2 (February-April 2021), 89% intended to get the COVID-19 vaccine, with 8% unsure. By late 2021, vaccination uptake was high, with 98% of respondents having received at least one vaccination. CONCLUSION: There is great value in harnessing a large longitudinal, well-described, and diverse cohort study to generate evidence in a changing context with evolving information needs. The collaborative model enhanced the value and relevance of the data to inform decisions.

3.
J Cancer Policy ; 33: 100340, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1945494

RESUMEN

BACKGROUND: Early reports suggested that COVID-19 patients with cancer were at higher risk of COVID-19-related death. We conducted a systematic review with risk of bias assessment and synthesis of the early evidence on the risk of COVID-19-related death for COVID-19 patients with and without cancer. METHODS AND FINDINGS: We searched Medline/Embase/BioRxiv/MedRxiv/SSRN databases to 1 July 2020. We included cohort or case-control studies published in English that reported on the risk of dying after developing COVID-19 for people with a pre-existing diagnosis of any cancer, lung cancer, or haematological cancers. We assessed risk of bias using tools adapted from the Newcastle-Ottawa Scale. We used the generic inverse-variance random-effects method for meta-analysis. Pooled odds ratios (ORs) and hazard ratios (HRs) were calculated separately. Of 96 included studies, 54 had sufficient non-overlapping data to be included in meta-analyses (>500,000 people with COVID-19, >8000 with cancer; 52 studies of any cancer, three of lung and six of haematological cancers). All studies had high risk of bias. Accounting for at least age consistently led to lower estimated ORs and HRs for COVID-19-related death in cancer patients (e.g. any cancer versus no cancer; six studies, unadjusted OR=3.30,95%CI:2.59-4.20, adjusted OR=1.37,95%CI:1.16-1.61). Adjusted effect estimates were not reported for people with lung or haematological cancers. Of 18 studies that adjusted for at least age, 17 reported positive associations between pre-existing cancer diagnosis and COVID-19-related death (e.g. any cancer versus no cancer; nine studies, adjusted OR=1.66,95%CI:1.33-2.08; five studies, adjusted HR=1.19,95%CI:1.02-1.38). CONCLUSIONS: The initial evidence (published to 1 July 2020) on COVID-19-related death in people with cancer is characterised by multiple sources of bias and substantial overlap between data included in different studies. Pooled analyses of non-overlapping early data with adjustment for at least age indicated a significantly increased risk of COVID-19-related death for those with a pre-existing cancer diagnosis.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Neoplasias , Adolescente , COVID-19/epidemiología , Estudios de Cohortes , Neoplasias Hematológicas/epidemiología , Humanos , Pulmón , Neoplasias/epidemiología
4.
J Cancer Policy ; 33: 100338, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1878231

RESUMEN

BACKGROUND: The early COVID-19 literature suggested that people with cancer may be more likely to be infected with SARS-CoV-2 or develop COVID-19 than people without cancer, due to increased health services contact and/or immunocompromise. While some studies were criticised due to small patient numbers and methodological limitations, they created or reinforced concerns of clinicians and people with cancer. These risks are also important in COVID-19 vaccine prioritisation decisions. We performed a systematic review to critically assess and summarise the early literature. METHODS AND FINDINGS: We conducted a systematic search of Medline/Embase/BioRxiv/MedRxiv/SSRN databases including peer-reviewed journal articles, letters/commentaries, and non-peer-reviewed pre-print articles for 1 January-1 July 2020. The primary endpoints were diagnosis of COVID-19 and positive SARS-CoV-2 test. We assessed risk of bias using a tool adapted from the Newcastle-Ottawa Scale. Twelve studies were included in the quantitative synthesis. All four studies of COVID-19 incidence (including 24,181,727 individuals, 125,649 with pre-existing cancer) reported that people with cancer had higher COVID-19 incidence rates. Eight studies reported SARS-CoV-2 test positivity for > 472,000 individuals, 48,370 with pre-existing cancer. Seven of these studies comparing people with any and without cancer, were pooled using random effects [pooled odds ratio 0.91, 95 %CI: 0.57-1.47; unadjusted for age, sex, or comorbidities]. Two studies suggested people with active or haematological cancer had lower risk of a positive test. All 12 studies had high risk of bias; none included universal or random COVID-19/SARS-CoV-2 testing. CONCLUSIONS: The early literature on susceptibility to SARS-CoV-2/COVID-19 for people with cancer is characterised by pervasive biases and limited data. To provide high-quality evidence to inform decision-making, studies of risk of SARS-CoV-2/COVID-19 for people with cancer should control for other potential modifiers of infection risk, including age, sex, comorbidities, exposure to the virus, protective measures taken, and vaccination, in addition to stratifying analyses by cancer type, stage at diagnosis, and treatment received.


Asunto(s)
COVID-19 , Neoplasias , COVID-19/epidemiología , Prueba de COVID-19 , Vacunas contra la COVID-19 , Humanos , Neoplasias/epidemiología , SARS-CoV-2
5.
Lancet Public Health ; 7(6): e537-e548, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1867957

RESUMEN

BACKGROUND: Long-term projections of cancer incidence and mortality estimate the future burden of cancer in a population, and can be of great use in informing the planning of health services and the management of resources. We aimed to estimate incidence and mortality rates and numbers of new cases and deaths up until 2044 for all cancers combined and for 21 individual cancer types in Australia. We also illustrate the potential effect of treatment delays due to the COVID-19 pandemic on future colorectal cancer mortality rates. METHODS: In this statistical modelling study, cancer incidence and mortality rates in Australia from 2020 to 2044 were projected based on data up to 2017 and 2019, respectively. Cigarette smoking exposure (1945-2019), participation rates in the breast cancer screening programme (1996-2019), and prostate-specific antigen testing rates (1994-2020) were included where relevant. The baseline projection model using an age-period-cohort model or generalised linear model for each cancer type was selected based on model fit statistics and validation with pre-COVID-19 observed data. To assess the impact of treatment delays during the COVID-19 pandemic on colorectal cancer mortality, we obtained data on incidence, survival, prevalence, and cancer treatment for colorectal cancer from different authorities. The relative risks of death due to system-caused treatment delays were derived from a published systematic review. Numbers of excess colorectal cancer deaths were estimated using the relative risk of death per week of treatment delay and different durations of delay under a number of hypothetical scenarios. FINDINGS: Projections indicate that in the absence of the COVID-19 pandemic effects, the age-standardised incidence rate for all cancers combined for males would decline over 2020-44, and for females the incidence rate would be relatively stable in Australia. The mortality rates for all cancers combined for both males and females are expected to continuously decline during 2020-44. The total number of new cases are projected to increase by 47·4% (95% uncertainty interval [UI] 35·2-61·3) for males, from 380 306 in 2015-19 to 560 744 (95% UI 514 244-613 356) in 2040-44, and by 54·4% (95% UI 40·2-70·5) for females, from 313 263 in 2015-19 to 483 527 (95% UI 439 069-534 090) in 2040-44. The number of cancer deaths are projected to increase by 36·4% (95% UI 15·3-63·9) for males, from 132 440 in 2015-19 to 180 663 (95% UI 152 719-217 126) in 2040-44, and by 36·6% (95% UI 15·8-64·1) for females, from 102 103 in 2015-19 to 139 482 (95% UI 118 186-167 527) in 2040-44, due to population ageing and growth. The example COVID-19 pandemic scenario of a 6-month health-care system disruption with 16-week treatment delays for colorectal cancer patients could result in 460 (95% UI 338-595) additional deaths and 437 (95% UI 314-570) deaths occurring earlier than expected in 2020-44. INTERPRETATION: These projections can inform health service planning for cancer care and treatment in Australia. Despite the continuous decline in cancer mortality rates, and the decline or plateau in incidence rates, our projections suggest an overall 51% increase in the number of new cancer cases and a 36% increase in the number of cancer deaths over the 25-year projection period. This means that continued efforts to increase screening uptake and to control risk factors, including smoking exposure, obesity, physical inactivity, alcohol use, and infections, must remain public health priorities. FUNDING: Partly funded by Cancer Council Australia.


Asunto(s)
COVID-19 , Neoplasias Colorrectales , COVID-19/epidemiología , Neoplasias Colorrectales/epidemiología , Femenino , Humanos , Incidencia , Masculino , Pandemias/prevención & control , Tiempo de Tratamiento
6.
EClinicalMedicine ; 47: 101375, 2022 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1783295

RESUMEN

Background: Globally, tobacco smoking remains the largest preventable cause of premature death. The COVID-19 pandemic has forced nations to take unprecedented measures, including 'lockdowns' that might impact tobacco smoking behaviour. We performed a systematic review and meta-analyses to assess smoking behaviour changes during the early pre-vaccination phases of the COVID-19 pandemic in 2020. Methods: We searched Medline/Embase/PsycINFO/BioRxiv/MedRxiv/SSRN databases (January-November 2020) for published and pre-print articles that reported specific smoking behaviour changes or intentions after the onset of the COVID-19 pandemic. We used random-effects models to pool prevalence ratios comparing the prevalence of smoking during and before the pandemic, and the prevalence of smoking behaviour changes during the pandemic. The PROSPERO registration number for this systematic review was CRD42020206383. Findings: 31 studies were included in meta-analyses, with smoking data for 269,164 participants across 24 countries. The proportion of people smoking during the pandemic was lower than that before, with a pooled prevalence ratio of 0·87 (95%CI:0·79-0·97). Among people who smoke, 21% (95%CI:14-30%) smoked less, 27% (95%CI:22-32%) smoked more, 50% (95%CI:41%-58%) had unchanged smoking and 4% (95%CI:1-9%) reported quitting smoking. Among people who did not smoke, 2% (95%CI:1-3%) started smoking during the pandemic. Heterogeneity was high in all meta-analyses and so the pooled estimates should be interpreted with caution (I2 >91% and p-heterogeneity<0·001). Almost all studies were at high risk of bias due to use of non-representative samples, non-response bias, and utilisation of non-validated questions. Interpretation: Smoking behaviour changes during the first phases of the COVID-19 pandemic in 2020 were highly mixed. Meta-analyses indicated that there was a relative reduction in overall smoking prevalence during the pandemic, while similar proportions of people who smoke smoked more or smoked less, although heterogeneity was high. Implementation of evidence-based tobacco control policies and programs, including tobacco cessation services, have an important role in ensuring that the COVID-19 pandemic does not exacerbate the smoking pandemic and associated adverse health outcomes. Funding: No specific funding was received for this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA